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1 Introduction

In 1991, the Federal Deposit Insurance Corporation Act authorized the Federal Deposit Insur-
ance Corporation (FDIC), "to obtain private reinsurance covering not more than 10 percent of
any loss the Corporation incurs with respect to an insured depository institution'(12U.5.C.A
1817(b)(1)(B)). Such authorization allows the FDIC to enter into ..nancial contracts with the pri-
vate sector that price and share bank default risk. Recently, the Options Paper produced by the
FDIC (FDIC, 2000) view reinsurance as one way ""to use market information to dicerentiate risks
without imposing a particular funding structure on insured institutions." Given the signi..cance of
such a possible dramatic move toward market pricing of bank risk, it becomes essential to under-
stand the elements of the reinsurance pricing, where a reinsurer provides excess-of-loss coverage
to the FDIC. This paper responds to such a need and develops a pricing model for excess-of-loss
reinsurance risk. However, we should note at the outset that our ..ndings should not be construed
one way or another as a position paper for or against a private sector reinsurance arrangement for
the FDIC.

From a contingent claims point of view an excess-of-loss reinsurance contract represents a
portfolio of call options written on the aggregate loss level of the FDIC. Erectively, the reinsurer
sells the FDIC a call-spread where the reinsurer will have to cover losses above a strike level
but its commitment is capped by a stated coverage level. In this paper, we obtain a closed form
pricing expression for the call-spread under the assumption that the underlying FDIC losses follow
a Weibull distribution, which is in the family of extreme-value distributions. We assume that the
reinsurer uses the risk neutral distribution of losses to price the reinsurance risk. However, the
reinsurer only observes the FDIC’s historical (statistical) loss distribution. We show that the
reinsurer can obtain the risk neutral density by exponentially tilting the FDIC’s statistical loss
distribution by a coe¢cient obtained from the traded options markets. We explain how this

exponential tilt may be seen as an approximation to a more general tilt that scales the cash fows



by the conditional expectation of the market pricing kernel.

The use of exponential tilts has a long history in ..nance. For one, it is now recognized
that Black-Merton-Scholes option pricing results from applying an exponential tilt applied to the
underlying Brownian motion (Du€e, 1992). In the context of the Black-Merton-Scholes complete
markets model this exponential tilt is in fact the unique complete markets solution. The idea
has been subsequently used in a variety of incomplete markets contexts including Heston (1993),
where the risk in the Brownian motion driving the volatility is priced by exponential tilting. More
generally for a diousion ..Itration it is well known (Karatzas and Shreve, 1991) that all measure
changes are locally exponential tilts of the underlying Brownian motions. The method has been
employed in the term structure literature. (see for example, Heath, Jarrow, and Morton,1992).
In models with jumps, Naik and Lee (1990) use exponential tilts by employing constant relative
risk aversion utility functions.

Our approach can also be related to recent literature estimating the risk-neutral and statis-
tical densities to make inferences about the implied risk-aversion coeCcients (see for example,
Jackwerth, 2000; Ait-Sahalia and Lo, 2000; Ait-Sahalia, Wang, and Yared, 2001; Coutant, 2001,
Bakshi, Kapadia, and Madan (2003); Bliss and Panigirtzoglou, 2004). Collectively, this literature
focuses on the entire distribution of the underlying assets values. However, catastrophe reinsur-
ance contracts, such as the reinsurance of the FDIC’s losses, have zero payo= in the center of
distributions and pricing these instruments requires focusing on the tail of the distribution of the
underlying asset values. Hence, we add to this literature by utilizing extreme value theory that
characterizes the tail distributions of positive random variables like loss levels and estimate the
tilting applicable to the tail events rather than the entire distribution of the outcomes.

To estimate the statistical distribution of the FDIC’s annual losses on bank failures, we follow
Madan and Unal (2003), who analyze the distributional properties of the losses in bank failures of
the 1986-2000 period. They show that the two-parameter Weibull distribution best characterizes

the FDIC’s loss distribution in about 1,300 bank failures. Lucas, Llaassen, Spreij, and Straetmans



(2001) also propose the use of Weibull density from a theoretical perspective to capture the
distribution of loss rates. We estimate the statistical parameters of the Weibull distribution for
annual losses incurred by the FDIC during 1986-2000.

To infer the applicable tilt coe@cient in the traded options markets we examine the prices of
deep out-of-the-money calls on bank equity (BKX) index and estimate the implied risk neutral
distribution in this market. We next estimate the statistical Weibull distribution of the BKX index
and infer the constant tilting coedcient implied by the statistical and risk neutral distributions.
We risk-neutralize the FDIC’s statistical loss distribution with the level of tilting implied in the
BKX index. Our ..ndings provide a range of values for the FDIC’s reinsurance risk from which
one can assess the reasonableness of the reinsurance prices.

We compare our estimated prices with those of MMC Enterprise Risk (MMC). In a report
submitted to the FDIC, MMC provides two rough price estimates FDIC might have to pay to a
private insurer to purchase a call-spread (MMC, 2001, p. 21). Our calculations show that MMC
estimates are in the vicinity of our price-estimates thus refect a risk neutral pricing rather than a
statistical one. In another application of our ..ndings, we estimate that the FDIC needs to charge
the banking system $4.3 billion in aggregate insurance premium for loss coverage of $26.56 billion.
This aggregate insurance cost represents 22.4 cents on $100 insured deposits at the level of $1.9
trillion insured deposits. Given the proximity of this estimate to the exective insurance premiums
assessed by the FDIC, we assert that FDIC is implicitly tilting the statistical distribution of its
losses with a tilt coe€cient that is close to the one observed in the traded options market.

The paper is organized as follows. Section 2 presents the underlying framework for our
analysis. Section 3 derives the Weibull option pricing model and section 4 estimates the implied
risk aversion in the options market. Section 5 shows the application of reinsurance pricing. Section

6 concludes the paper.



2 Pricing the reinsurance contract

2.1 The Weibull call option pricing model

An excess-of-loss reinsurance contract is a portfolio of call options written on the aggregate loss
level, L, of the FDIC. The ..rst call option is written by the reinsurer on the FDIC’s aggregate
loss level at a strike K. As the buyer of this call, the FDIC incurs losses up to K but receives
from the reinsurer the loss amount L exceeding the strike K. However, the reinsurer’s coverage
of losses above the strike is not unlimited and payments are capped at K + B, where B is the
the stated coverage level. This condition implies that the FDIC simultaneously sells the reinsurer
a call option struck at K + B. This second call caps the reinsurer’s payout at the coverage level
B. Taken together, this portfolio of two call options implies that the reinsurer sells the FDIC a
call-spread.

For a coverage level of B the loss contingent payoxz to the call-spread, CF(L), at year end can

be expressed as:

CF(L) Min (Max (L — K,0), B) 1)

= Maz(L— K,0) — Max(L — (K + B),0)

The ..rst call option in Equation (1) represents the call option the reinsurer sells the FDIC written
on the FDIC’s aggregate loss level, I, at a strike K. The second option ensures that the reinsurer’s
coverage of losses above the strike is capped at K + B.

We suppose that the quoted prices for claims of this type are free of arbitrage and hence assume
the existence of a risk neutral probability of a loss arrival A and a risk neutral conditional density
q(L), of the loss levels L. Speci..cally, the price of this call-spread w, given an annual continuously

compounded risk-free interest rate of r is given by

w= e " /OOO CF(L)q(L)dL. 2



For the particular application made in this paper we note that the FDIC has always incurred
some level of loss in each year since 1980. We assume therefore that the statistical probability of
a loss arrival is one. By the equivalence of risk neutral probabilities to the underlying statistical
probabilities it follows that one may assume the risk neutral X is also one.

To price the call spread, the reinsurer then just needs to identify a relevant risk-neutral prob-
ability distribution for annual loss levels, ¢(L). This density describes the current market price of
loss contingent bonds that pay one-dollar face in a year on the contingency that particular loss
levels are attained. The focus of any reinsurance contract is on the tail of this distribution of loss
levels. Essentially, the critical question is to have an adequate description of the tail behavior as
the call spread contracts of interest have a zero payo= at low loss levels. For models of the tail we
turn to extreme value theory that characterizes the tail distributions of positive random variables
like loss levels.

There are basically three parametric classes of distributions that characterize tail behavior.
These are the Frechet, Gumbell and Weibull (Embrechts, Kluppellberg, and Mikosch (1997)). We
note that of the three, the Weibull describes the limiting behavior of scaled maximal losses drawn
from random variables with an upper bound. In the present context the potential loss levels are
bounded above by the size of assets in place and hence such a distribution might be the right
choice. Indeed, Lucas, Llaassen, Spreij, and Straetmans (2001) use Weibull to describe extreme
tail behavior of credit losses in terms of portfolio characteristics. Additionally, an investigation
conducted by Madan and Unal (2003) into densities describing FDIC loss distributions shows that
of these three the Weibull distribution provides the best ..t to this data.! These considerations
lead us to proceed with the Weibull model for the purposes of the present study.

The speci..c functional form for the Weibull density, g(L; ¢, a) with parameters ¢ and a is given

1 Weibull, Frechet, Beta, and Logit normal distibutions are ..t to the loss experience of the FDIC. For a more
detailed discussion of the relative properties of these densities in the context of ..nancial loss modeling we refer the
reader to Madan and Unal (2003).



by
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with mean p and standard deviation o
1
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2
o CWHE)F@;) -
a a

where I'(x) is the gamma function.

The parameter c is a scaling parameter and « is called the shape parameter. The value of a
determines the relative fatness of the tail of the distribution, with higher values of a leading to
thinner tails. We see from Equations (4) and (5) that the coe®cient of variation is determined by
the parameter a.

We next derive in Proposition 1 the closed-form expression for the price of the call option

(Maz(L — X,0) with strike X written on the loss level L , which is distributed Weibull.

Proposition 1 The value of the Weibull call option, with parameters ¢ and a, written on the loss
level L with strike X is given by

C=¢e" [L*Wl — XWQ]

where L* = I (1 + é) (6)

a 1
Wy = 1-— gammainc <(%) 1+ ;) @)

o (-(3))

and L*is the expected loss level under the risk-neutral measure, I' and gammainc are the
gamma and incomplete gamma functions.

Wo

Proof in the Appendix
We note the Weibull call option formula has a similar structure to the Black-Scholes option

pricing formula. The present value of the strike is multiplied by the Weibull risk neutral probability



that the call is in the money. L* is the risk neutral expected loss level and this is multiplied by
W1, which is the probability of the call being in the money under a suitably adjusted measure. It
follows that a reinsurer can obtain the theoretical expression for the call-spread, given in Equation
(2), as the dizerence between the two call options with strikes K and K + B written on loss levels

that is Weibull distributed.

2.2 Risk neutralization strategy

The reinsurer, however, only observes the historical loss experience of the FDIC and must then
estimate the parameters of the risk-neutral Weibull distribution to obtain a price quote. For a per-
spective we turn to the extensive literature on the reinsurance of catastrophic disaster losses. This
literature is divided in the way it risk-neutralizes an estimated statistical distribution. As elegantly
explained in Cummins, Lewis, and Phillips (1999) two approaches exist in pricing catastrophic
insurance pricing. The ..rst approach employs utility functions of risk averse agents to construct
the risk-neutralized density and this is termed the actuarial approach. In contrast, the ..nancial
approach models the determinants of marginal utility of a representative agent, decomposing the
risks into a systematic and diversi..able component. For diversi..able risks it can be shown that
the risk neutral and statistical density coincide with no adjustments being necessary. For example,
Cummins, Lewis, and Phillips (1999) suppose that catastrophic losses are diversi..able and employ
the statistical distribution directly in pricing.

However, diversi..cation is typically accessible via a large number of draws on independent
and comparable events, that in particular do not involve dominating events. This is questionable
for contexts dealing with events that are extremal and dominating by design. Thus, we address
the issue of how to speci..cally risk neutralize the statistical density in the absence of access to
appropriate diversi..cation. In contrast to adopting a speci...c utility based approach we investigate
the relationship between the risk neutral and statistical densities in active options markets where

both densities may be adequately estimated. Indeed, Bakshi, Kapadia, and Madan (2003) show



that the risk neutral density in options markets is related to the statistical one by a renormalized
exponential tilt. Furthermore, we note that in many insurance applications risk-neutral and
statistical distributions are related by what is called the Esscher transform that exponentially tilts
the statistical distribution to determine the risk neutral distribution (Esscher (1932), Sondermann
(1991), and Gerber and Shiu (1996)).

Hence, our approach to identify ¢(L) is to assume a statistical distribution for the FDIC’s
historical loss levels, p(L), and tilt this statistical distribution by an exponential tilt coeccient,

«, and renormalizing it to obtain the risk-neutral density as follows:

e*Ep(L)

W) = Tty ar

©)

To determine the coe€cient of exponential tilting from the traded options market, we assume
that the reinsurer estimates p(S) from the time series of asset returns and ¢(S) from the prices
of options that are written on these assets. Hence, once the speci..c densities for the distributions
p(S) and ¢(S) that appropriately characterize the underlying are speci..ed for the options market,
the reinsurer can estimate the implied tilting coe@cient, «, between the two using Equation (9)

as follows:

1%<%%%>:—kg<émdﬁMSﬂS>+a& (10)

Note that we can construct a linear approximation to the logarithm of the ratio of the two densities
by employing a least squares curve ..tting scheme in which the error is a deterministic error of
approximation in functional forms. This estimation can be conducted by running the following

regression equation:

1%<M&>—k+ S+e. (11)

Note that in Equation (11) there are no statistical dimensions involved as the error term ¢
is nonrandom, and k, « are the intercept and slope of the linear approximation. Thus, once the

estimates of £ and « are obtained the reinsurer can estimate the risk neutral density of the losses,



q(L), given p(L) as follows
q(L) = exp(k + aL)p(L) (12)
2.3 Exponential tilts and asset pricing

The strategy of exponential tilting is consistent with a number of theoretical results on asset
pricing in economics. When we have a complete markets equilibrium in which the pricing kernel is
uniquely determined, we may view exponential tilting as a local approximation to a more general
tilt that is determined by the conditional expectation of the pricing kernel. The variations in the
speci..c tilts across the range of state space of the asset price and across assets then retect local
covariations between the asset and the kernel. Somewhat more formally, the price, w, of claim to
a state contingent cash fow c(w) can be written as the discounted at the risk-free rate of return

(r) of the expected cash fow, where expectation is taken at the risk-neutral measure, £
w=e "B [¢(w)] (13)

Alternatively, the expectation can be taken at the statistical measure, E¥as follows

w=e"EF [A(w)c(w)] 14

where A(w) is the change of measure density. Conditioning on the price of the underlying asset S

we may write

w=e"EY [EF [AMw)|S] c(9)] (15)
where we have supposed for simplicity that the claim is contingent only on the value of S. De..ning
by

9(8) = BY [Aw)|S)] (16)

we see that the market price for a claim is an expected value of the tilted cash fow, tilted by ¢(S).

Further, g is a positive function of the real valued variable S and the mixture of exponentials in z



is a spanning set of functions for all potential tilt functions g. For a local analysis of the behavior
in a part of the tail, the use of a single exponential is adequate and this can be checked by the
quality of the regression of In(q/p) on S as given in Equation (11). Note that in Equation (11) one
is merely constructing a local linear approximation to In(g) in S . If the speci..c asset risk is not
priced in the region under study, then would we expect to observe & = « = 0 in equation (11).

From an incomplete markets point of view the pricing kernel to be used is no longer uniquely
determined and is individual speci..c as well. In this case, tilt variations also incorporate dicerences
in the risk aversions of participants as well as informational variations on the distribution of the
risks involved, to the extent that the scaled Weibull model is an approximation to the true and
richer statistical model. For a speci..c connection between equation (9) and utility theory the
reader is referred to Appendix 7.2 that relates exponential tilts to a speci...c utility function. The
coeCcient of exponential tilting can then be related to a constant absolute risk aversion coe¢cient
of an agent facing the losses.

The next section provides the details for estimating the tilt coe€cient . This exercise is
followed by the estimation of the statistical loss density for the FDIC. Finally, we tilt this density

to obtain the risk neutral density and price the call spread.

3  Weibull implied exponential tilt in the options market

3.1 Estimation approach

To approximate the appropriate tilt coe¢cient we assume that the reinsurer examines market risk
preferences on an asset that best retects the aggregate bank risk. One proxy for such an asset
is the PHLX / KBW Bank Index (BKX). BKX is a capitalization-weighted index composed of
24 geographically diverse stocks representing national money center banks and leading regional
institutions. The index is evaluated annually by Keefe, Bruyette & Woods to assure that it
represents the banking industry. The index was initiated on October 21, 1991 and options started

trading on September 21, 1992.
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We view the reinsurer as basically a ..nancial ..rm that is positively correlated with the banking
sector and is well funded. Such a reinsurer is not on the buy side of the bank index out-of-the-
money put market and probably not on the sell side as well. The incentives for extra premia may
be expected from a short position in out-of-the-money BKX calls and these considerations lead
us to use the upside call tilting coeccient as an appropriate level of risk aversion.

We assess the degree of exponential tilting that occurs in pricing out-of-the-money equity call
options at the 1, 5, and 10 percent risk levels. We do this analysis by estimating the statistical
and risk neutral densities in the upper tail of the returns, denoted by p(S), and ¢(.5) respectively,
and estimate the regression equation given in equation (11) for values of .S in the upper tail of the
statistical distribution.

To maintain consistency with the FDIC’s loss distribution, we choose the Weibull as the
functional forms for these densities. We focus attention on returns over a prespeci..ed horizon and
let S be the ..nal stock price while Sy denotes the initial stock price.

We de...ne the excess return

R=< )

that is a positive random variable for which the Weibull distribution is an appropriate extreme
value density refecting ..nite moments of all orders. For both the statistical and risk neutral

density we suppose the density of R has the Weibull form with parameters ¢ and « :

F(R) = exp (— (R = 1)) alf - ) (19)

c c@

We estimate from time series data on daily returns, using 25% of the largest and smallest returns
the statistical parameters cust and aust representing the statistical upside ¢ and a values.

For a comparison with the risk neutral density we have to construct returns at the option
maturity from the estimated daily return distribution. However, in making a comparison with
risk neutral densities there is a horizon mismatch, as risk neutral densities are observed over much

longer horizons than a single day. This mismatch has hindered the research agenda on these
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questions for some time now, as it is not clear how one should construct longer horizon returns
from good estimates of short horizon likelihoods. There is a temptation to assert that forward
daily returns are sampled from independent distributions that are identical to the density for
the current daily return. However, such a procedure runs against the basic intuition that daily
returns are state contingent entities, where the current state is much clearer than the possibilities
open for the forward state. One could attempt to identify by time series or vector autoregression
methods, a high dimensional Markov representation for the data generation mechanism associated
with asset returns, but this is likely to take us astray into a host of time series and econometric
issues.

Instead, we recognize the nature of the basic intuition that uncertainties pertaining to the
distant future are rising as we contemplate forward returns at the current time by using a scaling
hypothesis. Under this hypothesis we model the return at a horizon of N days as having the
distribution of v/N times the daily return distribution, or de..ne the return over N days, Ry to

be in law
Ry —1'% VN(R-1) (19)

The variance then grows linearly with N as it would were we to add independent and identically
distributed, but unlike the situation with addition of independent random variables, skewness and
excess kurtosis remain constant in N. For the case of adding i.i.d. variables, skewness falls like ﬁ
and excess kurtosis falls like % as shown in Konikov and Madan (2002). In the sense of the higher
moments, the uncertainty is maintained at a higher level than would be the case with summing

independent and identically distributed random variables.?

2 Alternatively, one may appeal to the work of Sato (1999) who shows that the class of all limit laws of arbitrarily
scaled sums of independent but not necessarily identical random variables are the laws at unit time of a scaled
process of independent and generally inhomogeneous increments. This observation makes such processes relevant to
the modeling of ..nancial returns, that may easily be seen as the limit of the sum of a large number of independent
eaects.

12



Thus, it follows that the Weibull density for Ry is

o (B)) e

and with parameters cv/N, a.

The corresponding risk neutral values are denoted curn and aurn and are estimated by cali-
brating the model prices developed under the speci..c density to the prices of the out-of-the-money
call options. For this task, following Proposition 2, we develop the Weibull call option pricing for-
mula using the Weibull density.

For a call option of maturity ¢ the call option value, cv,

co=e "t /OO (SoR — K) exp <— <R — 1)“) a(f— 1) dR. (21)

K C Ca

So
Note that in equation (21), we do not impose the condition that the discounted stock price is
the current stock price as we do not assert that the Weibull density applies for all levels of the
stock price, but only applies in the upper right tail where the speci..ed calls are in the money.

Traditional option pricing models model the entire distribution of the underlying asset and hence

must enforce the spot forward arbitrage condition requiring that

506” /0 S1q(St)dS; (22)

or that the ..nanced stock purchase have zero price. Since we focus on the Weibull model for just
the tail of the distribution, and use it to price out of the money calls on the up side, we do not
have a condition integrating across the entire of stock prices. In fact, we impose no distributional

hypothesis at all, in the center of the distribution, or the near money density.

Performing the requisite integration in equation (21) we obtain that

K _1\*
—rt So
cvo = e (SO—K)eXp<—< . ) )-I—
—rt 1 . S£0 B ’ 1
Soce "'T(1 + E) 1 — gammainc - 1+ - (23)
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Hence, the risk-neutral parameters curn and aurn can be estimated by calibrating equation (23)
to the out-of-the-money call prices struck at the top ..ve strikes trading in the market. For these

strikes we use a maturity of around 2 months.

3.2 Results on the BKX Index

We use time series data on the Bank Index (BKX) for 1500 days ending on September 28, 2001
to obtain the statistical distribution and data on index options for every second wednesday of
each month over the year beginning in October 2000 and ending in September 2001 to estimate
the risk-neutral distribution. To estimate the statistical parameters of the Weibull density we
..rst compute the upside returns as described in the previous section. We sort these returns and
extract the top 25% of returns. The Weibull model is estimated by maximum likelihood on large
positive returns to yield the statistical parameters for the BKX index. The estimated parameters
are cust = 0.0345 and aust = 2.5324.

The risk neutral parameters are estimated by calibrating model prices (equation (23)) to the
call option prices with maturity of around two months with the ..ve largest strikes trading in the
market for this maturity. The calibration is done for one day in each month from October 2000
to September 2001. The results are presented in Table 1 for the BKX index, where the average
curn = 0.0645 and aurn = 0.9413.

Next, the regression equation (11) is estimated where the logarithm of the ratio of the risk
neutral density to the scaled statistical density regressed on the price level in the range between 1%
to 0.01% return levels in two months. The resulting slope coeCcients are the associated levels of
exponential tilting on the upper tail of the return distribution. The results are presented in Table
1 along with the mean levels of tilting for the BKX. We observe that the mean levels of tilting to
losses on the up side in BKX is 0.1739. Hence, we propose to tilt the statistical distribution of the

FDIC’s losses by this coe€cient to obtain the risk neutral distribution.
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3.3 Tilt coeccients for individual banks

For a perspective on the level of the tilt coeccient estimated for the BKX, we present similar
calculations for a sample of 18 bank holding companies. We estimate by maximum likelihood the
statistical parameters of the Weibull density for each individual bank using the top 25% of returns
of preceding 1000 trading days of every second wednesday of the month from September 1998 to
December 2002. The risk neutral parameters are estimated by calibrating model prices (equation
(23) to the call option prices on every second wedesday of the month with strikes at least 10% out
of the money and maturity between 25 and 50 days. Estimations are performed with at least three
options and in the case when there are less than three option prices, we denote the week as invalid.
Therefore the number of valid weeks out of a possible 112 possible weeks vary among individual
bank estimations. Once the statistical and risk neutral densities are obtained tilt coe®cient for
each bank is estimated by utilizing the regression equation (11).

Table 2 reports mean and median values of the estimated tilt coeCcient for each bank in
columns 1 and 2, respectively. Column 3 shows number of weeks when estimation could be
undertaken given the available data points. Column 4 shows the number of options used on
average to estimate the risk neutral distribution. From column 1, we observe that the level of
individual tilt coe¢cients ranges between .14 and .31. Such variation is expected to the extent that
these coeCcients retfect the risk attributes of the individual names. To have a rough assessment of
such an expectation we report in column 5 of Table 2 the average credit spreads observed weekly
during January 2000 through May 2001.2 We regress these credit spreads on the estimated tilt
coeCcients and observe that the slope coe€cient is positive and signi..cant at the 1% signi..cance
level with R? = 0.33 and the correlation coe@cient is 0.58.Thus, these preliminary ..ndings provide

some support that our estimated tilt coeCcients reasonably capture bank risk.

3 We thank Gerry Hanweck for providing us the spread data.
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4 Calculating the price of the FDIC’s aggregate loss risk

4.1 Statistical parameter estimation

Consistent with the above approach we should estimate by maximum likelihood the statistical
parameters of the Weibull distribution applicable to the loss experience of the FDIC. However,
the frequency of available data poses a special di€¢culty. Our focus is to capture the distribution
of annual losses and we have only 15 years of annual loss data covering 1986-2000. The aggregate
annual loss levels of the FDIC is displayed in Table 3. Although we could increase sample ob-
servations by including years dating back to 1930s we ..nd this manner of expanding the sample
undesirable because these dated periods are not refective of risks faced by the today’s FDIC.
Thus, application of maximum likelihood approach is not appropriate for such a small number of
observations.

We resolve this dicculty of estimating the statistical parameters c and a, by using the sample
mean and standard deviation of the FDIC’s annual loss experience for p and o and invert the

following:

2 T(1+2
142 L0+3) 24)
pe T (1+ 1)

Equation (24) is derived from Equations (4) and (5). From Table 2 we observe that the annual
mean and standard deviation of annual loss levels between 1986-2000 is ;1 = $2.106 billion and
o = $2.497 billion, respectively. Substituting these values in Equation (24) and using method
of moments, we obtain the statistical parameters for the Weibull distribution as ¢ = 1.9317 and

a = 0.8472.

4.2 The value of the call-spread

We can price the call spread now by using the tilt coedcient of 0.1739 to tilt the statistical
distribution and obtain the risk-neutral distribution. We estimate the price of a call spread in the

context of a reinsurance quote estimate given to the FDIC. Recently, the FDIC retained MMC
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Enterprise Risk (MMC) to determine the feasibility and the costs of private sector reinsurance
arrangements. In a report submitted to the FDIC, MMC provides two rough price estimates for
reinsuring the aggregate annual losses of the FDIC (MMC, 2001, p. 21). The speci..c estimates
are such that the annual premium on a $2 billion coverage at a one basis point (less than one
chance in 10,000) risk level is $4 million. A second price estimate states that the annual premium
on a higher risk level of one percentage point (one chance in 100) with $0.5 billion dollar coverage
is $10 million. Although the strike levels are not speci..cally indicated in the report we can easily
estimate the implied strikes given the parameters of the statistical Weibull density.

Note that the probability of a loss amount exceeding the strike is given by
PL>K)=0=1-F(K) (25)

For the Weibull cumulative distribution function,

F(K)=1—exp [f <—>T (26)

equation (25) is written as

—log(6) = <5)a (27)

Hence, the strike is expressed as

o~

K = c(—1log(0)) (28)

Substituting the estimates of ¢, a, and the risk level, 6, in equation (28) we obtain K; = $11.72
billion and K, = $26.56 billion for the high risk and low risk cases, respectively. We note that
these estimates of strike levels, implied by the quoted prices, can be considered reasonable because
they are well within the current $30 billion FDIC deposit insurance fund level.

To risk neutralize the statistical loss density of the FDIC we need to exponentially tilt it by
the level observed in the pricing of BK X options on the up side, 0.1739. Toward this end, we

might use equation (12). However, exponentially tilting a Weibull p(L) as in equation (12) does
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not yield a Weibull ¢(L). As an alternative approach, we alter the risk neutral density such that
the derivative of the logarithm of the risk neutral density accounts for the altered tilt. Speci..cally,
using equation (9) the estimated tilting is basically the dicerence between the derivative of the

logarithm of the risk neutral and statistical densities,

dlogq(L) dlogp(L)
dL dL

=0.1739

We evaluate the derivative of the logarithm of p at the two strikes of 11.72 and 26.56 to be

—.3638 and —.2871. This provides us two equations

dlogq(L)

o\ - 0.1
1L l11.72 0.1899

dlogq(L)

COe R 56 = —0.1132
1L |26.56 0.113

from which we can simultaneously solve for the parameters ¢ and a of ¢(L) to obtain ¢ = 1.0517
and a = 0.5050. Using these values for the risk neutral parameters we price the two call-spreads

to obtain the values

w(.01,.5) = 16,120,000

w(.0001,2)

10,802, 215

These prices compared with those of the MMC estimates appear to be overpriced by $6 million in
each case.

We can place these estimates in perspective by pricing the call-spread statistically. In other
words, assuming risk neutrality we can use the statistical mean $2.106 billion and standard devi-
ation $2.497 billion as our working Weibull distribution and estimate the actuarially fair prices.
Under this assumption, using equation (6), the call-spread is valued statistically at $4.5 million
and $150,000 for 1 % and 0.01 % risk levels, respectively. Note that the statistical prices establish
the lower bound for the reinsurance price risk. Thus, we observe that MMC estimates retect some

level of tilting in pricing rather than assuming risk neutrality on the part of the reinsurer..
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4.3 Pricing the aggregate coverage

The current assessment system used by the FDIC requires the FDIC to charge at least 23 cents
per $100 deposits if the mandated reserves to insured deposits, designated reserve ratio (DRR),
is below 1.25%. The Deposit Insurance Funds Act of 1996 prohibits the FDIC from assessing
depository institutions as long as DRR is above 1.25%. As of December 31, 2000, 92% of all
insured institutions were not paying premiums for deposit insurance (FDIC, 2001).

Our estimates of the FDIC’s risk neutral loss density can also be used to compute the aggre-
gate premium that should be collected from the insured institutions. If we accept the degree of
exponential tilting outlined above, then the risk neutral density for coverage up to $26.56 billion
is:

60'1739Lp(L s = 2.106,0 = 2.497)

q(L) = .
() 2050 0AT9L ([ = 2,106, 0 = 2.497)dL

(29)

Note now that as the FDIC owzers the random coverage level L each year then the aggregate
premium that should be collected at the 0.01% risk level from the insured institutions is the price

of this coverage and this is given in forward terms by:

26.56
= / Lq(L)dL. (30)
0

For the speci...c risk neutral distribution given in equation (29), we compute this integral at $4.2764
billion. For the level of insured deposits around $1909.9 billion this is a premium of 22.4 cents
per $100 deposits for the year 2001, which is quite comparable with the average deposit insurance
premium charged by the FDIC when the insurance fund is below 1.25% of the insured deposits.
In addition, this estimate of the aggregate deposit insurance premium is quite comparable with
those of Cooperstein, Pennacchi, and Redburn (1995), who estimate the fair premium to be in
the range of 23.8 — 24.9 cents for years 2000 and 2001. We also estimate the average premium for
the same coverage assuming tilt coe@cients of 0.308 and 0.141. These are the highest and lowest

coeCcients estimated for the individual banks reported in Table 2. At these levels the insurance

19



premiums are estimated to be 52.79 cents and 18.84 cents, respectively. In other words, we should
expect the insurance premiums to vary as the risk levels and hence the tilt coe®cients change over
time and across banks.

Calculated statistically, the value of the integral in equation (30) is $2.1032 billion. This value
represents deposit insurance premiums of 11 cents per $100 deposits. In other words, we can assert
that the assessed deposit insurance premium is consistent with FDIC tilting the distribution of
its historical loss experience.

To ensure that the level of the fund is a risk neutral martingale, 22.4 cents premium should
be collected each year (assuming no change in statistical and the risk neutral distributions).
However, statistically, the fund will have a positive expected cash tow and it is therefore expected
to grow over time in line with the return commensurate with the insurance business it is engaged
in (Pennacchi, 2000). The question does arise as to who gets the expected return from this
activity. Although this questions begs in depth analysis, we can assert that if the fund is viewed
as mutually owned by the insured institutions then the growth may be transferred to them in the
form of reduced premiums and this could be the logic underlying the decision to reduce premiums

to zero in certain growth situations.

5 Conclusion

Our ..ndings can be summarized as follows. We envision the reinsurer to be facing the FDIC’s sta-
tistical loss experience, which we estimate to be Weibull distributed with mean $2.106 billion and
standard deviation $2.497 billion. We propose that the reinsurer risk-neutralizes this distribution
by a tilt coe¢cient obtained from the traded call option prices on the BKX index. Application
of the call-spread pricing expression derived in the paper yields the reinsurance price estimates.
When we compare these prices to estimates provided by the MMC we observe that MMC prices
are consistent with our estimates in that they embed tilting on the part of reinsurer. Similar

observations are made when we assess aggregate coverage of loss risk by the FDIC. Our estimates
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of the average premium of 22.4 cents on $100 deposits retects tilting the statistical distribution

by a coeCcient that is observable in the options market.
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7 Appendix

7.1 Proof of Proposition 1: Derivation of the Weibull call option model

Note that for strike X we can express the payoo to a call option written on the loss level L as

follows:
cx) = [ (-3 fmL. (31)
X
where the Weibull probability density function is given by
I\ aL¢™!
f(L) =exp (— (—> ) —. 32)
Cc C

Hence, equation (31) can be written as,

o) = [ rew (- (1)) b e (- (X)), ®
X

The ..rst term is simpli..ed as follows:

/Lexp (— <£>“) aL‘:l dL = % /La exp <— (E)a> dL (34)
c c c c
X

X

Letting u = (£)*, y = cuw, and dy = Su=~"', we have

c

= ;ia / c*u (exp (—u)) gu%_ldu, (35)
()"
= ¢ / uw (exp (—u)) du (36)
()"
o ()"
= c/u% (exp (—u))du — ¢ / uw (exp (—u)) du @37
0 0
(%)
/ uw (exp (—u)) du
- cl"<1+%>cl"<1+%> 0 Oy (38)

Noting that,

(39)

gammainc(w,y) =
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and substituting equation (38) in equation (33) and discounting it at the risk-free rate of r,

we have

g

C=ec" o <1+%> <1 —gammainc((g)a,wéﬂ (40)
-xen(-(5)))]

7.2 A utility based derivation of the relation between ¢(L) and p(L).

The expected utility of an agent absorbing the loss payment L is given by

u = E[UW-L) (41)

. /WL UW — L) fW)AW)g(L[W)dWdL
....... + /W UW)f(W) (1= XW))dW. (42)
The agent’s utility of the end of period wealth, W, with marginal distribution, f(1/), in the absence
of a loss, L, is U(W). This state has a probability of (1 — \(1W)) where, A\(W) = f0°° p(W, L)dL
is the probability of a loss given the end of period no loss wealth of W.Here, p(W, L) is the joint

density for a loss level L. Hence, with A(W) probability, the agent is exposed to losses and his

utility is U(W — L).In this case, the conditional density of loss is given by g(L|W) = %

Now suppose that the loss level is independent of the end of period no loss wealth level and

that
g(LIW) = p(L) (43)

the unconditional density of loss given the existence of a loss. Also suppose that A\(W) = X a

constant. We may then write
u= / UW — L)f(W)Ap(L)dWdL + / 1=XNUW)f(W)dWw. (44)
W,L w

Suppose now that the agent is ocered a contingent claim paying ¢(L) at the end of the period.

If the agent were to take a position of ¢ units in this claim at the fair forward price of a dollars
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then the expected utility of the agent can be expressed as:

Vi) = /WL UW = L+ te(L) — ta) f(W)Ap(L)ALAW

+/ (1 = NU(W — ta) f(W)dW
w

Because the claim is fairly priced, we have that V’/(0) = 0. Evaluating V’(¢) we get

V() = /WL U'(W — L+ te(L) — ta) f(W)Ap(L)(c(L) — a)dLdW

fa/ (1= NU'(W — ta) f(W)dW
w
Equating V’(0) to 0 we get
/ U'(W — L) f(W)Ap(L)e(L)dLdW
W,L
~ . / U'(W — L) f(W)Ap(L)dLdW
W,L

+a/ (1= U/ (W) F(W)dW
w

It follows that the fair forward price, a, of the contingent claim is:

S U'W = L) fW)Ap(L)e(L)dLdW 1
T i  UW =D FW)Ap(L)dLdW  1+b

where,
y— (L= MU FW)dw
[ U'(W = L) f(W)Ap(L)dLdW
De..ne
o) = Jw W = DFWDp(L)aw

Ty UOW = L) f(W)Ap(L)dLdW

then we can write:

a:/Lq(L)c(L)%_i_de

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

Equation (52) shows that, ¢(L) is the risk neutral density for a loss level of L, given the

existence of a loss while (1+ b)~! is the risk neutral probability of a loss. Hence, we can establish
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the relation between statistical, p(L), and.risk neutral, ¢(L), probability distributions, assuming
a speci..c utility function. For the case of an exponential marginal utility or the case of constant

absolute risk aversion, «,

U' (W) = exp(—aW) (53)

equation (51) is written as

(L) = Jw exp —a(W — L) f(W)Ap(L)dW
R Jw.pexp—a(W — L) f(W)Ap(L)dLdW

simplifying we obtain:

e*tp(L)

q(L) = T e lp(L)iL

(54

Note that if U’ is constant and utility is linear then b = (1 — A\)/A and (1 +b)~! = X\, which
is the statistical probability of a loss. More generally we expect U'(W — L) > U’(W) so b should
be less than (1 — \)/X and (1 + b)~* is greater than \. Hence the presence of risk aversion raises
the risk neutral loss probability over its statistical counterpart.

For the aggregate system we suppose that A = 1 and there is some loss each year and hence

the equation for pricing loss contingent claims in the spot market is

e Ta=e" /000 q(L)e(L)dL

where risk neutralization occurs in accordance with equation (54).
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TABLE 1: Risk-neutral Weibull parameter estimates on extreme 2-month BKX

call options and implied tilting coe@cients in the BKX tail distribution.

Date Maturity | curn aurn Tilt Coec¢cient

Oct. 2000 | .1804 0.0821 | 1.1453 | 0.1348

Nov. 2000 | .1968 0.0176 | 0.4245 | 0.2533

Dec. 2000 | .1779 0.0272 | 0.5128 | 0.2588

Jan. 2001 | .1781 0.0540 | 0.6997 | 0.2415

Feb. 2001 | .1779 0.0659 | 0.9728 | 0.1747

Mar. 2001 | .1779 0.0914 | 1.0725 | 0.1841

Apr. 2001 | .1753 0.0867 | 0.9985 | 0.2026

May 2001 | .1945 0.0680 | 0.9862 | 0.1596

Jun. 2001 | .1753 0.0524 | 1.0211 | 0.1135

Jul. 2001 .1945 0.0734 | 1.1855 | 0.0732

Aug. 2001 | .1917 0.0637 | 1.1206 | 0.1152

Sep. 2001 | .1563 0.0913 | 1.1556 | 0.1763

Mean 1814 0.0645 | 0.9413 | 0.1739
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Table 2. Tilt coedcients for a sample of bank holding companies
Tilt coe€cients are estimated for the September 1998- December 2002 period. Estimated weeks
represent the number of weeks when at least three options exist for estimating the tilt coe@cients.

Average credit spread are calculated over weekly spreads between January 2000 and May 2001

Avg. Median | Estimated Avg. Average
Tilt Tilt Weeks Number of Credit
Options Spread (%)

Bank of America Corp. | 0.278 | 0.281 102 14 1.746
BB&T Corp. 0.197 | 0.194 75 8 1.222
Bank of New York 0.198 0.187 87 12 1.529
Citigroup 0.141 0.130 98 15 1.433
Comerica Inc. 0.262 | 0.259 59 9 1.682
Fleet Boston Financial | 0.232 | 0.217 85 9 1.625
Fifth Third Bankcorp. | 0.232 0.236 61 8 1.237
J.P.Morgan Chase 0.179 | 0.176 98 15 1.593
Key Corp. 0.197 | 0.195 84 9 1.590
National City Corp. 0.298 0.291 71 7 1.845
Bank One Corp. 0.207 0.202 95 15 1.886
PNC Financial Services | 0.251 | 0.244 77 11 1.346
South Trust Corp. 0.308 0.264 79 7 1.838
Suntrust 0.305 0.303 76 10 1.729

State Street Corp. 0.164 | 0.169 70 13 1.522
Union Planters 0.327 | 0.326 65 8 2.154

US Bancorp. 0.154 | 0.151 89 12 1.609
Wachovia Corp. 0.265 0.267 93 10 1.606
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TABLE 3: FDIC Annual Loss Levels

Source: Failed Bank Cost Analysis, 1986-2000, Division of Finance, FDIC

Year | Loss (in $Billions) | Number of Bank Failures
1986 | 1.775 145
1987 | 2.023 203
1988 | 6.921 280
1989 | 6.199 207
1990 | 2.785 169
1991 | 6.148 127
1992 | 3.675 122
1993 | 0.646 41
1994 | 0.179 13
1995 | 0.085 6
1996 | 0.038 5
1997 | 0.005 1
1998 | 0.234 3
1999 | 0.841 7
2000 | 0.039 6
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Statistical and Risk Neutral Weibull Loss Densities

Statistical
c=1.9317

/ a=0.8472

Risk Neutral
¢ =1.0517
a=0.5050

L
5 10 15 20 25 30
Loss Levels in Billions

Figure 1. Weibull Statistical and Risk Neutral Distributions for Annual Fund Loss Levels. The
risk neutral distribution is obtained by exponential tilting the statistical density using Bank Index
option market tilt coeCcient.
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